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Abstract. Le: (M, F) be a symplectic manifold and consider a Lie subalgebra G of
its Lie algebra of symplectic vector fields. We prove that every one-differentiable
deformation of order k of the Poisson Lie algebra of M, which is invariant with
respect to G, extends to an invariant one-differentiable deformation of infinite
order. If M admits a G-invariant linear connection, a similar result holds true for
differentiable deformations and for star-products. In particular, if M admits a G-
-invariant linear connection, there always exists a G-invariant star-product.

INTRODUCTION

Let M be a smooth connected Hausdorff second countable manifold equipped
with a symplectic form F. We assume that dim M > 2. Denote by L the Lie
algebra of symplectic vector fields of (M, F).

Let G be a Lie subalgebra of L. The aim of this paper is to study the formal
deformations of the Poisson Lie algebra (N, P) where N is the space of all smooth
real functions on M and P the Poisson bracket, and the star-products which are
invariant by G.

This problems has already been considered by various authors, namely [6, 5, 1].
It is shown in [6] that, if there exists an invariant Vey star-product, then M
admits an invariant symplectic connection. We prove here that the existence of
an invariant linear connection implies that every invariant formal deformation
of P or star-product of finite order extends to an invariant formal deformation of
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P or star-product (of infinite order).

It is proved in [6], § 18, that, for the Hochschild cohomology of N, an in-
variant coboundary is the coboundary of an invariant cochain. However, using
then an argument of the Neroslavsky-Vlassov type [8] leads to obstructions
lying in the third invariant de Rham cohomology space of M. In this note, we
avoid these obstructions essentially by adapting to the invariant case the proof
of [2] of the existence of star-products on an arbitrary symplectic manifold. To
do this, we need the description of the invariant Chevalley cohomology of (N, P)
obtained in [3]. The adaptation is straightforward in the case of 1-differentiable
deformations but more delicate in the general case.

We use the definitions and notations of [2].

THE MAP 7

Recall that Agiff‘nc(N) is the space of differential cochains on N (i.e. alternating
(p + 1)-linear maps of NP *linto N), vanishing on the constants (nc); Agiff(JC(M),
N) is the space of differential N-valued (p + 1)-cochains on the Lie algebra of
all vector fields H(M).

Then u* :Agiff(JC M), N) »Aﬁiff,nc(N) is defined by

m*c(ug, . .. ,up) = c(HuO, - ,Hup)

where #, is the Hamiltonian vector field of u.

One of the keys in [2] is the existence of a right inverse 7 of u* forp =1,
with appropriate additional properties. One more is required here: that 7 preserves
invariance.

Denote by 8 and 3’ the Chevalley coboundary operators of A 4¢(N) and
A 4s(F (M), N) and by SE and ¢, the Vey cocycle of A(lﬁff,nc(N) and the cocycle
of A(lﬁff(JC(M), A2(M)) such that SI3, = u*(A, ¢,), where A is the contravariant
analogue of F.

PROPOSITION 1. Let M admit a G -invariant connection . Then there exists a
linear map v : A , . (N) > AL (3C(M), N) such that

(i) p*or =id on A, (N),
(ii) Tou* =id on AX(M)

(iii) T(fS3) =7(A, ¢p), VFEN,
(iv) (108) AY¢ po(N) Cim 2’

(v) if CEAéiff’nc(N) is G -invariant, 7C is G-invariant.
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It is known [6] that each CEA(Ijiff 2cV) can be written (in a unique way)
Clu,v) = Z (TP-4, VPu ®Vyp)
p.q
where TP°9 is a contravariant (p + g)-tensor, symmetric in its first p and its last
q arguments and where (,) indicates the contraction of the first p indices of
TP:9 with VPu and of the last one’s with V9v; since V, the covariant derivative
corresponding to T, is invariant, C is invariant if and only if each 779 is invariant.
Thus 7'C, obtained from C by replacing

VPu=VPldu=VPli(H)F
by

X->VP H(X)F
transforms an invariant element of Aéiff’ 2c(V) into an invariant element of
A(lﬁff,nc(N), and 7' is a right inverse of p*. Unfortunately, it does not verify

(iii) and (iv). Clearly, 7’ can be defined similarly on each Agiff nc(N).
Denote by I the subspace of all invariant elements of Aéiff 2cV) and set

Aligr e = [04%¢ , (N + T+ u*AXM)+N - SIS E, .
We can write

0
aAdiff,nc

where £, C/Nim 3, E,Cim d\/, E,C I\im 0.
We now define 7 as follows:

N+ T+ w*AXM)+N-S3=p*A’M)eN-S3e E. ¢ E .0 F
r r 2 3 4

(i) on E|, 7is any right inverse of u*,

(i) onE, 7= 7',

(iii)) on £ 71is defined as in [2],

(iv) on uFAZ(M), To u*Q = Q,

(V) on NS, 7(fS}) =f(A. ¢,

(vi) on E,: according to [3], prop. 7.1., if C=4D eA}Mf, ne(V) is invariant,
C=0(F + u*w), where F is invariant and w € AYM). There exist thus
k1 :EZ—)Agiff,nc(N) and k2 :E2—> AYM) such that k1E2 is made of invariant
elementsand d o (k; + u* ok,) =idon E,. Set 7 = d'o7' 0k + 9o k,.

Then 7 verifies all the required properties.

THE ONE-DIFFERENTIABLE CASE

Recall that a formal differential deformation of order k of P is a formal series
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L = iov"q of differential bilinear maps C; :Nx N- N, vanishing on the

constants and such that the formal Jacobi identity is verified up to the order
k. In other words, [, ] denoting the Nijenhuis-Richardson bracket, the compo-
nents of v’ (i < k) in [£,, £,] are vanishing.

The first result in [2] essentially shows the following. If £ is a differential
deformation of P and if £ is closed, the differential deformation of order k&
£V+ vk u*) extends to a differential deformation. The same holds true within
the class of invariant deformations. The results of [2] are stated for local deforma-
tions but apply trivially to differential deformations.

THEOREM 2. Assume that M admits a G-invariant linear connection. Let £V
be a differential G-invariant deformation of P and let S be a closed G-invariant
2-form. Define inductively IL¥ (k € N) by L0 =¢ and

eIy, = Z [IL?, w*i(X) 7 IL9] |,
p+q=2-1

whenever § = di(X)F on the open subset U of M. Then each ILl’)c is globally
defined, G-invariant, and

Y wk
k=0

is a differential deformation in uof L . In particular,

Lo
k=0

is a G-invariant deformation of P equal to £ + v u*S at the order t.

The only point added to thm. 2.1. in [2] is the G-invariance. We prove it by
induction on L. Since £ is invariant, for Y € G, on the open subset U,
0=LyQ2=Ly,di(X) F=di(LyX) F= LLYXF.

Thus L, X € L. Assume now that IL? is G-invariant for p < 2. Then, since IL?
and TILg are invariant, if U is contractible and LYX = Hu on U,

QL LY |, = Y [P p*iLyX) 7L =
p+q=2-1

1
= - i@ Y A Id=0

p+q=92-1
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since 2 u" IL,’i is a formal deformation of .CV.

Remark 3. As mentioned in [2], if £, is 1-differentiable, so are all the IL’lf 's. In
this case, we make use of 7 only on u*A2(M), where it is uniquely defined by
p* o7 =1id. Thus thm. 2. holds true for 1-differentiable deformations without
the assumption that M admits a G-invariant connection. As in [2], it follows that
every G-invariant 1-differentiable deformation of order k extends to a G-inva-
riant 1 -differentiable deformation.

INVARIANT DIFFERENTIAL DEFORMATIONS WITH DRIVER P + vr Sf,

The coefficient of v in a differential deformation of P is a cocycle of Aloc nc@)s
thus it has the form C=r Sg u*Q + oE. A basic step in contructing a differen-
tial deformation equal to P + v C at the order 1 is to obtain a differential deforma-
tion equal to P + VrS[3. at the order 1. Its existence is granted by thm. 3.3. of [2]
and what we are going to prove now is that, if I' is invariant, the differential
deformation constructed in [2] is also invariant.

THEOREM 4. Assume that M admits a G-invariant linear connection. Then, given
rE€IR,, there exists a unique differential deformation £ of P with driver P ¥
+ vrS2, such that

(D 3,6 +ILI(L,F)=0,
where IL) (L, F) is defined as in thm. 2 for Q = F and 0 is the map
2 vku > T 2k — 1) vFu, .

Moreover, this ,,CV is G-invariant.

The result is proved in [2], thm. 3.3, except the invariance of £ =X Vka.
We will prove by induction on k that C, is invariant. It is true for £ = 0,1. As
in [2], & is defined on a contractible open subset U by FlU =di(§) F.

Recall that a 2-cocycle C has a umque decomposition C =r S3 + p*D, where
D is a cocycle; thus C = u*C where C =71’ A, ¢+ D. The cocycle D 1s not
unique but, whatever it is, u*i(§)d’ C*‘——rS3 Thus pC + u*i(§)d’ c=0
implies C = 0 provided p # 0 and 1.

Consider now C, . The relation (1) implies that

LG+ Qk+ D)C— i (B)7C,= ) [C,, u*i (§)7C,]

ptq=k
pqg>0
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and standard computations (see [2], lemma 3.1) reduce this equality to

Qk=DCAHRMED'TC= ) [C,, w*i(E)7C,).

Apply Ly(X €G) to both sides. If X =H, on U, Ly¢=H, ; " We thus
obtain, assuming that Cp is invariant forp <k,

1
(2) Rk-DL,C +u*i(§)oL,7C,=— —ij(u— L)L, L], =0.
X vk X" vk ) £ v ik

On the other hand, 9 C, is invariant. Thus, by [3], prop. 8.1.
C=fS 4+ u*Q +E+dE|
where £, df and d§2 are invariant. Then
TC =f{N ¢ )+ Q+TE +70F'
where 7F is invariant and 73 E’ is a coboundary and
WLy TC=Lyf-S3+ u*(LyQ + Ly T3E"),

where L fis constant and L, (2 + 79 E") is a cocycle.
Since 2k — 1 > 1, (2) implies that Ly Ck = 0. Hence the result.

THE GENERAL CASE

THEOREM 5. Let M admit a G-invariant linear connection. Then every invariant
formal deformation of P of any order is the driver of an invariant deformation
of P.

We refer to the proof of thm. 3.4 of [2] and observe that every invariant
2-cocycle can be written rSI3,+ p*n+ 07T, where 7 and T are invariant. The
proof is then entirely similar to the above-mentioned one, using thm. 2 and 4.

STAR-PRODUCTS

A differential weak star-product (resp. star-product) of order k is a series
M,=2 N C; of differential bilinear maps C; : N x N -+ N symmetric (resp. and
nc) for i even > 2, antisymmetric and nc fori odd, such that C0 =m: (u, v) > uy,
Cl = P and such that M, is associative up to the order k.

It is shown in [6], §5 that if M, is a weak star-product of order %, its terms
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C,{2i <k) take the form C,;, = C_2i +a;m with ¢; €R and (_,',. nc. Denote by
PA the set of all formal series 1 + glai)\" (ai € R). It is then easily seen that

each weak star-product M, can be factorized in a unique way
(3) My=pQD) M,

where p(\) € P, and M, is a star-product.
From each weak star-product (resp. of order 2k) M, derives a formal deforma-
tion of P (resp. of order £k — 1)

1
£1M(u7 U) = - [M }\(u9 V) - M)\(Ua u)])\-: 2
2v

Conversely, a formal deformation £v =2 ViC2i+1 derives from a (unique) week
star-product if and only if

1 .
Cy=— S}+u*Q + JE,
3!

where d§2 = 0 ([4], thm. 3.5).

It follows from (3) that, if £ derives from M,, M, is a star product if and
only if £ has no divisor in P \{1}.

The existence of invariant star-products is now ruled by the following theorem.
The case of weak star-products is easily deduced by (3).

THEOREM 6. Assumme that M admits a G-invariant linear connection I'.. Then
every invariant differential star-product of order 2k is the driver of order 2k of
an invarignt star-product. In particular, M admits at least one invariant star-
-product.

2%
Let Mi‘ = _EO N'C; be an invariant differential star-product of order 2k.
i=

Assume first that k> 1. If .L”lf*l derived from M¥, it is invariant and thus it

A2

extends to an invariant £ . This £ derives from a weak star-product M, = Eo N¢.

i=
It is easily seen that M, is differential. It is invariant. Indeed, with the notations
of 4, if X EG
O0=L,(M,AM)=2M,ALyM,
—_ 32 ' _

and Ly M, = 151 A 'LXCZ,.. Thus, by [4], cor. 3.7, LXM}\ = 0.

We have now to check if M, extends Mi‘.

Ifi<k—1, Céi = C,;. This is proved by induction on i as follows. If it is
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true forj < k — 2, we have
PA(Cy,,—Chpep) =0,
MA(Cyy 4= Chp ) +C0(C,,—Cy ) =0,
PA(CY 4= Chpe ) + G0 (Cy ,— Gy, ) =0

hence, by [4], lemma 3.6, C2i+ ,=C

Fori =k — 1, we only have

'
2j+2°

PA(Cy_,— Czlk—z) =0
thus, by the same lemma,
Cop_,=Cy_,+am(@eR).

Replacing M, by (1 —aA*-2)M,, we obtain C; =C; for i<2k—2, but

=C —aP.

13
now C k-1

2k-1
Define

> 7\"uk—>2 k)\"uk.

Then Ad (exp Mbm)M A 18 a new weak star-product equal to M, up to the order
t and its term of order £ + 1 is C;+ ; + bP. Thus replacing again M, by Ad (exp
\*am)M,, we obtain a new M, equal to M¥ up to the order 2k — 1 and still
invariant.

For the term of order 2k, we have now
mA (Cz'k —Cyu)=0

hence Cék — C,; is a Hochschild 2-cocycle. Being symmetric, it is a coboundary.
It is moreover invariant. By {6], it is of the type mAT for some invariant 7.
Transforming now M, by Ad (1 + 22X T), we finally obtain a weak star-product
M, equal to M’)f up to the order 2k and invariant. The related starproduct H)\ is
still invariant and equal to M ;‘:k up to the order 2k, hence the result.

1
If k=1, according to [6], M,}=m+)\P+ 3 )\(P§+mAT) where T may

1
be choosen invariant. Then M!can be extended by M!+23 (; S+ PAT )
and the argument developped for £ > 1 can be applied without changes.

1
If k = 0, m extends first by m + AP + A2P2.
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