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Abstract.Let (M, F) bea symplecticmanifoldandconsidera Lie subalgebra(C of
its Lie algebraof symplecticvectorfields. Weprove that everyone-differentiable
deformation of order k of the PoissonLie algebra of M, which is invariant with
respect to (C, extendsto an invariant one-differentiabledeformationof infinite
order. If M admits a (C-invariant linear connection,a similar result holds truefor
differentiabledeformationsandfor star-products.In particular, if M admitsa (C-
-invariant linearconnection,therealwaysexistsa (C-invariantstar-product.

INTRODUCTION

Let M be a smoothconnectedHausdorffsecondcountablemanifoldequipped
with a symplectic form F. We assumethat dimM> 2. Denote by L the Lie
algebraof symplecticvectorfields of (M, F).

Let ~1be a Lie subalgebraof L. The aim of this paper is to study the formal
deformationsof the PoissonLie algebra(N, P) whereN is the spaceof all smooth
real functions on M and P the Poissonbracket,and the star-productswhich are
invariantby G.

Thisproblemshasalreadybeenconsideredby variousauthors,namely [6, 5, 1].

It is shown in [6] that, if there existsan invariant Vey star-product,then M

admits an invariant symplecticconnection.We provehere that the existenceof
an invariant linear connectionimplies that every invariant formal deformation
of P or star-productof finite orderextendsto an invariant formal deformationof
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P or star-product(of infinite order).

It is proved in [6], § 18, that, for the Hochschildcohomologyof N, an in-
variant coboundaryis the coboundaryof an invariant cochain.However,using

then an argument of the Neroslavsky-Vlassovtype [8] leads to obstructions
lying in the third invariant de Rham cohomology spaceof M. In this note, we
avoid theseobstructionsessentiallyby adapting to the invariant casethe proof

of [2] of the existenceof star-productson an arbitrary symplecticmanifold.To
do this, we needthe descriptionof the invariantChevalleycohomologyof (N,P)

obtainedin [3]. The adaptationis straightforwardin the caseof 1-differentiable

deformationsbut moredelicatein the generalcase.
We usethe definitionsandnotationsof [2].

THE MAP r

Recall that A~~ff~c(N) is thespaceof differentialcochainson N(i.e. alternating

(p + 1)-linear mapsofN~~1into N), vanishingon the constants(nc);A~ff(~C(M),
N) is the spaceof differential N-valued(p + 1)-cochainson the Lie algebraof

all vectorfields ~IC(M).

Thenp~:A~~(~lC(M),Al) .s.AP(A’) is definedby

u ) = c(H~, . . . , H
0 )

p p

whereH0 is theHamiltonianvectorfield of u.
One of the keys in [21 is the existenceof a right inverser of it” for p = 1,

with appropriateadditional properties.Onemore is requiredhere:that r preserves

invariance.
Denote by a and 3’ the Chevalley coboundary operatorsof Athff(N) and

Athff(~C(M),AT) and by S~and the Vey cocycleof A~fffflC(N)andthecocycle

of A~fGIC(M),A
2(M)) such that S~,= p*(A ~r>’ where A is the contravariant

analogueofF.

PROPOSITION1. Let M admit a t1-invariant connection F. Then there exists a

linearmap r : A~f~ -+ A~f(~C(M),N) suchthat

(i) ~LL*0 r = id on A~fflC(N),

(ii) r 0 = id on A2(M)

(iii) r(fS~)=f(A, Ø~), VfEN,

(iv) (r 0 &) A~~~C(AOC im 3’

(v) if CEA~fffflC(N)is tlT~-invariant,rC is G-invariant.
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It is known [6] that each CEA~ffflC(N)can be written (in a unique way)

C(u, v) = ~ V11u ®V~v)

where ~ is a contravariant(p + q)-tensor,symmetricin its first p and its last

q argumentsand where ( ,) indicatesthe contractionof the first p indices of
Tpq with \7~uand of the last one’swith ~~v; since V, the covariantderivative

correspondingto F, is invariant,C is invariant if andonly if eachT~’~is invariant.

Thus r’C, obtainedfrom C by replacing

= V”~du=

by

X-÷V~’i(X)F

transforms an invariant element of A~~~~(N)into an invariant element of
A~fflC(N), and r’ is a right inverse of p~.Unfortunately, it doesnot verify

(iii) and (iv). Clearly, r’ canbe definedsimilarly on eachA~IffflC(N).
Denoteby I the subspaceof all invariantelementsof A~ff~~(AT)andset

A~~~~(N)= [3Ad°~f ~~(N)+I+ 11*A2(M)+N. S~]~stE~.

We canwrite

~

where Cl fl im 3,E~C im 3 \I, E
4 C l\im 3.

We now definer as follows:

(i) on E1, r is any right inverseof 12*,

(ii) onE4,T=r’,
(iii) on E3,r is definedas in [2],
(iv) on 12*A

2(M), ro
12*f2 =

(v) on NS~,r(fS~)= f(A, ~r>,
(vi) on E2: according to [3], prop. 7.1., if C = 3D EAk~~~(N)is invariant,

C = 3(E + p*w), where E is invariant and w E A
1(M). There exist thus

k
1 ~ and k2 :E2—* A’(M) suchthat k1E2ismadeof invariant

elementsand 3 o (k1 + 12* ok2) = id on E2. Setr = 3,0 r’ o k1 + 3’ ok2.

Thenr verifies all the requiredproperties.

THE ONE-DIFFERENTIABLE CASE

Recall that a formal differential deformationof order kofF is a formal series
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£ = ~ p’C. of differential bilinear maps C1 : N x N -÷N, vanishing on the

constantsand such that the formal Jacobi identity is verified up to the order
k. In other words, [ ,] denoting the Nijenhuis-Richardsonbracket,the compo-

nentsof v’ (i ~ k) in [,C, £~]arevanishing.

The first result in [2] essentiallyshows the following. If £~is a differential
deformation of P and if f~is closed, the differential deformationof order k

£ + pk11*f2 extendsto a differential deformation.The sameholds true within
the classof invariant deformations.Theresultsof [2] are statedfor local deforma-
tions but apply trivially to differential deformations.

THEOREM 2. Assume that M admits a (C-invariant linear connection. Let £

be a differential (C-invariant deformationofP and let fl be a closed(C-invariant

2-form.DefineinductivelyILk (k E IN) by IL~~= £~and

~ [JL~~,11*i(X)TIL~]Iu
p+q=t-1

whenever&~= di(X)F on the open subset U of M. Then each lL~is globally
defined,(U-invariant, and

is a differential deformationin 12 of.C~.In particular,

pktjj~k

is a (C-invariantdeformationofPequal to £~+ p’~at theorder t.

The only point addedto thm. 2.1. in [2] is the (C-invariance.We prove it by

induction on Q. Sincef~is invariant,for V E (C, on the opensubsetU,

0= L}~f~= L~di(X)F= di (LYX)F=LL xE.

Thus L~XE L. Assume now that 11)’ is (C-invariant for p <2. Then, sinceIL~

andrIL~are invariant,if U is contractibleandL~X= H0 on U,

QLyIL~Iu’ ~ [ILPp*i(L~X)rIIfl] =

p+q=Q—l

= —i(u) ~ [IL~’,IL~]=0
2 p+q=2—1
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since~ ii’ IL” is a formal deformationof £~.

Remark3. As mentionedin [2], if £~is 1-differentiable,so are all the L~‘s. In

this case,we makeuse of T only on 12*A2(M), whereit is uniquely definedby

~ = id. Thus thm. 2. holds true for I -differentiable deformationswithout
the assumptionthat M admitsa (C-invariant connection.As in [2], it follows that
every (C-invariant 1 -differentiabledeformationof order k extendsto a (U-inva-
riant 1-differentiabledeformation.

INVARIANT DIFFERENTIAL DEFORMATIONS WITH DRIVER P + yr S~

Thecoefficientof pin a differential deformationofFis a cocycleofA~~~~(ZV),
thusit hasthe form C = r S~+ 12*~Z+ 3E. A basicstepin contructinga differen-

tial deformationequalto F + vC at the order 1 is to obtain a differential deforma-
tion equalto P + vrS~at the order 1. Its existenceis grantedby thm. 3.3. of [2]
and what we are going to prove now is that, if F is invariant, the differential
deformationconstructedin [2] is also invariant.

ThEOREM 4. Assumethat M admits a (C-invariant linear connection.Then,given

r E 1R~,there exists a unique differential deformation£~of P with driver P-1-

+ vrS~,suchthat

(1) 3~O+IL~(C,F)=0,

whereIL’(.C, F) is definedas in thm. 2 for &2 = Fand 0 is the map

~ ~ ~ (2k— l)vh1u~.

Moreover, this £ is (C-invariant.
V

The result is proved in [2], thm. 3.3, except the invarianceof £~=~ v”C~.
We will prove by induction on k that Ck is invariant. It is true for k = 0,1. As

in [2], ~ is definedon a contractibleopensubsetU by Ft~= di (~)F.
Recall that a 2-cocycleC has a unique decompositionC = r’S~+ ,1*D, where

D is a cocycle; thus C = p*C, where C= r’ (A, ~,) + D. The cocycle D is not
unique but, whatever it is, jL~i(~)3’ C = — r’S~.Thus pC+ 11*i(~)3’ C = 0

implies C = 0 providedp z�’ 0 and 1.
Considernow Ck. Therelation(1) implies that

L
1C~+ (2k+ l)C~—312*i(~)rC~~~ [C,,,12*i(~)TC~1

p+q =k
p ,q >0
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andstandardcomputations(see [2], lemma3.1) reducethis equality to

(
2k_l)Ck+p*i(~)aIrCk= ~j [Cp~11*l(~)TCq]•

p+q=k
p,q >0

Apply L~(XE (C) to both sides. If X = H
0 on U, ~ = HUL We thus

obtain,assumingthat C~,is invariantfor p < k,

(2) (2k _l)LxCk+p*i(~)aLxTCk=_ — i(u — L~u)[C~,£p]k= 0.

On the otherhand,
3Ck is invariant. Thus, by [3], prop.8.1.

Ck=fS~+p*&2 +E+ 3E’,

whereE,df anddf~areinvariant.Then

rCk =f(A,Ø~)+ ~ + rE + r3E’

whererE is invariantandr0E’ is a coboundaryand

11*LXTCk= L
1f- S~+ l2*(Lxf~+ L~r3E’),

whereL~fis constantandL1(f~+ r0E’) is a cocycle.

Since2k — 1 > 1, (2) implies that LXCk = 0. Hencetheresult.

THE GENERAL CASE

THEOREM 5. Let M admit a (C-invariant linear connection.Then every invariant

formal deformationof P of any order is the driver ofan invariant deformation
ofP.

We refer to the proof of thm. 3.4 of [2] and observethat every invariant

2-cocycle can be written rS~+ 12*77 + 3 T, where ~ and T are invariant. The
proof is then entirely similar to the above-mentionedone,usingthm. 2 and4.

STAR-PRODUCTS

A differential weak star-product (resp. star-product) of order k is a series

M ~ = A
1 G, of differential bilinear maps C, : N x N -+ N symmetric (resp.and

nc) for i even~ 2, antisymmetricand nc for i odd,suchthat C
0 = m: (u, v) -+ uv,

C1 = Pand suchthat M ~is associativeup to theorderk.
It is shown in [6], §5 that if M~is a weak star-productof orderk, its terms
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C
2~(2i<k) take the form C2, = C~,+ a1m with a1 E JR and C1 nc. Denote by

1~the set of all formal series 1 + ~ a,X’ (a1 E IR). It is theneasily seenthat

eachweakstar-productM~canbe factorizedin a uniqueway

(3) M~=p(X
2)M~

wherep (A) E lP~and lA~is a star-product.
From eachweak star-product(resp.of order 2k) M~derivesa formal deforma-

tion ofP(resp.of orderk — 1)

£~(u,v)= — [MX(u,v)—MX(v,u)]A_~2.
2v

Conversely, a formal deformationL~= ~ P’C
2I+1 derivesfrom a (unique)week

star-productif andonly if

C3= — S~+,.i*~2+3E,
3!

wheredf~= 0 ([4], thm. 3.5).

It follows from (3) that, if L~derivesfrom M~,M~is a star product if and
only if L~has no divisor in WV \ {l}.

The existenceof invariantstar-productsis now ruled by the following theorem.
The caseof weakstar-productsis easily deducedby (3).

THEOREM 6. Assumethat M admits a (C-invariant linear connection F. Then
everyinvariant differential star-product of order 2k is thedriver of order 2k of

an invariant star-product. In particular, M admits at least oneinvariant star-

-product.

Let M ~ = ~ X’C, be an invariantdifferential star-productof order2k.

Assume first that k> 1. If £‘~~ derived from M~,it is invariant and thusit

extendsto aninvariant£ . This £ derivesfromaweakstar-productM ~ = E X’C,’.
1=0

It is easily seenthat M~is differential. It is invariant. Indeed,with the notations
of[4], if XE (U

0 = L~(M~I~M~)= 2 M~I2~LxM~

andL~M~= ~ X
2’LXC~I.Thus,by [4], cor. 3.7,L~M~= 0.

Wehavenow to checkif M~extendsM ~.

If i < k — 1, ~ = C
21. This is provedby induction on i as follows. If it is
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trueforj < k —2, we have

= 0,

m/~(C21÷4—C~.~4)+C2L\(C2.÷2—C~.2)= 0,

hence,by [4], lemma3.6,C21~2 = ~ 2~

For i = k — 1, weonly have

= 0

thus,by the samelemma,

C2k2 = C~~_2+am(aElR).

Replacing M~by (1 —aX
21’2)M~,we obtain C~’= C

1 for i ~ 2k —2, but

now C~~_1= C~_1—aP.
Define

ir :~X”u~~*~2kX”u~.

Then Ad (expXtblr)M ~ is a new weak star-productequalto M~up to the order
t and its term of order t + 1 is C~ + bP. Thus replacingagain M~by Ad (exp
A

21’ a7r)M~,we obtain a new M~equal to M~up to the order 2k— 1 and still

invariant.
Forthe term of order2k, we havenow

mt~(C~
1’—C21’)=0

henceC~k— C2,~is a Hochschild 2-cocycle.Being symmetric,it is a coboundary.
It is moreoverinvariant. By [6], it is of the type mt~T for some invariant T.
Transformingnow M~by Ad (1 + A

2” 7), we finally obtain a weak star-product

M~equal to M ~ up to the order 2k andinvariant.The relatedstarproductM~is
still invariantandequalto M ~ up to the order2k, hencethe result.

If k= 1, according to [6], M~=m+AP+ ! A(P~+mt1T) where T may

be chooseninvariant. Then M~can be extended by M~+ A3 (~-~S~+ Pt~T)

and theargumentdeveloppedfor k> 1 canbe applied without changes.

Ifk=0,mextendsfirstbym+AP+ ~ ~
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